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Summary

Neuroimmunology as a separate discipline has its roots in the fields of neu-
rology, neuroscience and immunology. Early studies of the brain by Golgi 
and Cajal, the detailed clinical and neuropathology studies of Charcot and 
Thompson’s seminal paper on graft acceptance in the central nervous system, 
kindled a now rapidly expanding research area, with the aim of understand-
ing pathological mechanisms of inflammatory components of neurological 
disorders. While neuroimmunologists originally focused on classical neuro-
inflammatory disorders, such as multiple sclerosis and infections, there is 
strong evidence to suggest that the immune response contributes to genetic 
white matter disorders, epilepsy, neurodegenerative diseases, neuropsychiatric 
disorders, peripheral nervous system and neuro-oncological conditions, as 
well as ageing. Technological advances have greatly aided our knowledge of 
how the immune system influences the nervous system during development 
and ageing, and how such responses contribute to disease as well as regen-
eration and repair. Here, we highlight historical aspects and milestones in 
the field of neuroimmunology and discuss the paradigm shifts that have helped 
provide novel insights into disease mechanisms. We propose future perspec-
tives including molecular biological studies and experimental models that 
may have the potential to push many areas of neuroimmunology. Such an 
understanding of neuroimmunology will open up new avenues for therapeutic 
approaches to manipulate neuroinflammation.
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neuroimmunology, neuroinflammation

Introduction

Neuroimmunology encompasses fundamental and applied 
biology, immunology, chemistry, neurology, pathology, 
psychiatry and virology of the central nervous system 
(CNS). Scientists in the field study the interactions of 
the immune and nervous system during development, 
homeostasis and response to injuries with the major aim 
of developing approaches to treat or prevent neuroim-
munological diseases.

The immune system has been generally regarded as autono-
mous and the brain protected by the blood–brain barrier, 
(BBB) and in the words of Rudyard Kipling (Barrack-room 
ballads , 1892), ‘never the twain shall meet’. In the past dec-
ades these dogmas have been strongly challenged and dispelled 
with the wealth of evidence showing that not only does the 

nervous system receive messages from the immune system, 
but that signals from the brain regulate immune functions 
that subsequently control inflammation in other tissues [1]. 
Communication between the immune system and the CNS 
is exemplified by the finding that many molecules associated 
with the immune system are widely expressed and functional 
in the nervous system and vice versa. Cross-talk between 
microglia and neurones is known to be essential for main-
taining homeostasis, yet such cross-talk also occurs between 
oligodendrocytes and microglia [2]. Disturbance in this com-
munication due to peripheral infections in mice are known 
to trigger microglia activation and augment neurodegenera-
tion [3]. Similarly, recent experimental studies show that 
maternal infections lead to long-term changes in microglia 
and abnormal brain development in the offspring [4,5].

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, 
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Clinical and Experimental Immunology REVIEW ARTICLE� Series Editor: Leonie S. Taams
NEURO-IMMUNE INTERACTIONS: HOW THE NERVOUS AND IMMUNE SYSTEMS INFLUENCE EACH OTHERdoi:10.1111/cei.13279

OTHER ARTICLES PUBLISHED IN THIS REVIEW SERIES
Neuroimmune interactions: how the nervous and immune systems influence each other. Clinical and Experimental Immunology 2019, 197: 276-277.
The immune system and psychiatric disease: a basic science perspective. Clinical and Experimental Immunology 2019, 197: 294-307
Depressive symptoms in inflammatory bowel disease: an extraintestinal manifestation of inflammation?
Clinical and Experimental Immunology 2019, 197: 308-318.
From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clinical and Experimental Immunology 2019, 
197: 319-328.

https://orcid.org/0000-0001-6169-9845
mailto:﻿
mailto:s.amor@vumc.nl
http://creativecommons.org/licenses/by-nc/4.0/


© 2019 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society 
for Immunology, Clinical and Experimental Immunology, 197: 278–293

279

 History of Neuroimmunology
NEURO-IMMUNE INTERACTIONS: HOW THE NERVOUS AND IMMUNE SYSTEMS INFLUENCE EACH OTHER

Despite this evidence, it is surprising that the term 
‘neuroimmunology’ was only first used on PubMed in 
1982, coinciding with the first Neuroimmunology Congress 
in Stresa, Italy (Fig. 1) and following the launch of the 
Journal of Neuroimmunology  in 1981. Although neuroim-
munology research has focused on multiple sclerosis (MS; 
using the search term ‘neuroimmunology’, 43% of papers 
on PubMed in 2018 were on MS), immune responses 
are also observed in Guillain–Barré syndrome (GBS), white 
matter diseases, psychiatric disorders, infections, trauma 
and neurodegenerative diseases traditionally considered 
to be ‘cell autonomous’ (Table 1).

One of the greatest misconceptions that impeded 
progress in neuroimmunology was the idea that the 
blood–brain barrier (BBB) and the perceived immu-
nological privilege of the brain prevent cross-talk 
between the CNS and immune systems. This long-
standing dogma has been challenged by recent studies 
and the discovery of glymphatics and meningeal lym-
phatic vessels [43]. Although this paradigm shift is a 
recent advancement in thinking of nervous-immune 
system cross-talk, such changes in the field, beginning 
over 150  years earlier, have been generally linked to 
technological advances, some of which have yielded 
Nobel Prizes in neuroimmunology (Table 2), including 
the development of mutant and transgenic mice to 
examine disease mechanisms, stem cell technologies 
and the novel CRISPR/cas9 system, that allows gene 
editing enabling personalized treatments.

Here, we review the developments in neuroimmunology 
since its roots in the first descriptions of immunological 
processes and neurological diseases, as well as the devel-
opment of technologies and clinical trials for such diseases. 
Important events are given in major timelines or eras, 
along with the Nobel Prizes considered relevant by their 
impact on the field of neuroimmunology. The review also 
includes a perspective on the future of neuroimmunology 
that should herald prospective approaches to understand-
ing these diseases, and we address several outstanding 
questions in the field. The long-term goal of this rapidly 
developing field of neuroimmunology is to further the 
understanding of how immune responses shape the nerv-
ous system during development and ageing, how such 
responses lead to neurological diseases, and ultimately to 
develop new pharmacological treatments. These aspects 
are thus the major topics of the International Society of 
Neuroimmunology meetings (ISNI) (Fig. 1) and the 
educational topics of the global schools in 
neuroimmunology.

Historical beginnings

The first descriptions of many neuroinflammatory disorders 
come from personal notes, early authors and diarists. The 
earliest report purported to be MS was in an Icelandic 
woman (in approximately 1200) and Saint Lidwina of 
Schiedam (1380–1433), while the detailed personal diaries 
of Sir Augustus d’Esté, born in 1794 (grandson of King 

Fig. 1. World map showing location of International School of Neuroimmunology (ISNI) meetings.
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Table 1. Neuroimmune diseases

Disease Clinical characteristics Immune involvement Ref

ADEM Lethargy, visual problems, paralysis associated 
with viral infection or vaccination

Demyelination, inflammation, axonal loss, 
hypertrophic astrocytes, activated microglia

[6]

ALS motor neurone disease Fatal motor neurone disease affecting the motor 
neurones leading to weakness of voluntary 
muscles

Systemic immune activation, microglia activation 
and hypertrophic astrocytes. Complement 
deposition

[7–9]

AD Progressive cognitive decline. Amyloid plaques, 
synaptic loss and neurofibrillary tangles. 
Anti-inflammatory drugs associated with 
reduced risk

Microglia, astrocytes, complement and cytokines in 
plaques. Aβ binds and activates microglia. Aβ 
reactive T cells in blood, immunoglobulin in CSF

[10,11]

Autoimmune encephalitis Psychiatric symptoms may predominate Autoantibodies directed against neuronal surface 
proteins including adhesion molecules, ion 
channels and receptors used as biomarkers of 
disease

[12,13]

CFS Chronic dysfunction including fatigue, headaches 
and cognitive impairment

PET imaging shows microglia activation. Immune 
dysregulation in cytokine profiles and T and B 
cells, immunoglobulin and natural killer cell 
cytotoxicity

[14]

CNS vasculitis Fatigue, impaired cognition, speech problems, 
seizures, paralysis

Inflammation of blood vessels in the CNS [15]

Depression Anxiety, cognitive impairment, panic attacks. 
Changes in serotonergic or glutamatergic 
transmission

Increased T cells and cytokines. Injection of 
inflammatory mediators, e.g. interleukin-2 and 
interferon gamma induce symptoms of 
depression

[16,17]

Epilepsy Seizures associated with cognitive and psycho-
logical sequelae

Innate and adaptive immune responses. Antibodies 
deposits on BBB. Anti-inflammatory agents 
control forms of epilepsy

[18,19]

GBS Acute paralytic neuropathy. High cerebrospinal 
fluid protein levels Disease seen following Zika 
virus infection

Pathogenic antibodies to gangliosides arise due to 
molecular mimicry in Campylobacter jejuni  
lipo-oligosaccharide infection

[20,21]

HD and other polyQ diseases Mutant huntingtin protein (or other polyQ) 
aggregates. Neostriatal atrophy and neuronal 
loss in putamen and caudate nucleus

Microglia express mutant huntingtin (and other 
polyQ) protein are dysfunctional. Expression of 
complement components in associated with 
severe atrophy

[22]

Infections Encephalitis, encephalomyelitis, meningitis, 
polyradiculitis or polyneuritis

Immune responses to infectious agent Some viruses 
induce immunosuppression (e.g. HIV, EBV, 
Herpes simplex virus)

[23]

Leucodystrophies e.g. X-ALD: progressive cognitive and motor 
function impairment and eventually total 
disability. Accumulated levels of very long 
chain fatty acids (VLCFA)

X-ALD: severe lymphocytic response. VLCFA 
impair monocytes. Activated microglia and 
astrocytes become dystrophic

[24,25]

MS Relapsing remitting or progressive neurological 
dysfunction. Oligoclonal cerebrospinal fluid 
bands

Demyelination and axonal loss in CNS associated 
with innate and adaptive immune cell activation

[26]

MG and other 
channel-opathies

Clinical features depend on antibody e.g. synaptic 
dysfunction, neuronal excitability due to 
inhibition of ion channel function

Antibody-mediated disorders of the neuromuscular 
junction, e.g. antibodies to AChR in MG

[27,28]

Neuromyelitis optica (Devic’s disease) Inflammatory disorder affecting 
optic nerves and spinal cord

Presence of antibodies to aquaporin 4 in 80% cases 
damage astrocytes

[29]

Paraneoplastic disorders Immune mediated disorders triggered by tumour 
expressing neuronal antigens. Clinical 
manifestations depend on target of antibody

Disease associated with antibody deposits on 
neuromuscular junction, Purkinje cell or 
peripheral nerves. T cells and immunoglobulin in 
cerebrospinal fluid

[30]

(Continues)
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George III of England) and the British writer W. N. P. 
Barbellion (1889–1919) reveal their daily struggle with symp-
toms of MS [44,45]. Examples of early reports of other 
neuroinflammatory diseases include Sir Thomas Willis, 
credited with the first description of myasthenia gravis (MG) 
in 1672 [46] (Fig. 2), as well as in early medical documents 
and diaries descriptions of encephalitis. Neuroinflammatory 
disorders were also documented in (albeit) fictional char-
acters in novels such as those by Charles Dickens [47,48].

Early detailed descriptions of many neurological diseases 
expanded in the early 1800s (Fig. 2), due in part to 

Jean-Martin Charcot (1825–1893), who systematically identified 
many neurological diseases including Charcot–Marie–Tooth, 
MS, Parkinson’s disease (PD; only later in 1872 was Parkinson 
credited for his earlier description, Fig. 2) and amyotrophic 
lateral sclerosis (ALS), by linking the clinical disease in patients 
with detailed studies of the anatomy and microscopy of dis-
eased tissues [49]. The link between neurology and immunol-
ogy gained momentum with the refinement of the microscope 
and development of staining techniques to allow detailed 
studies of tissue. For example, the identification of different 
types of glial cells in the CNS and peripheral nervous system 

Disease Clinical characteristics Immune involvement Ref

Parkinson’s disease Progressive movement disorder associated with 
loss of dopaminergic neurones

Microglia and astrocyte activation associated with 
neuronal loss. IL-1b gene polymorphisms 
associated with early onset. CD4+ and CD8 T 
cells in animal models

[31]

SLE, PSS, diabetes, gluten 
ataxia

SLE: cognitive decline, depression, seizures, 
chorea. PSS: optic neuritis, vasculitis, results 
neurological syndrome. Gluten ataxia: 
cerebellar ataxia and atrophy

SLE: vasculitis, autoantibodies, immune complexes [30]
PSS: inflammation mimicking MS. Gluten ataxia: 

loss of Purkinje cells associated with immune 
activation

Stroke Blockage of blood vessel or haemorrhage deprives 
CNS of oxygen resulting in various levels of 
unconsciousness

Systemic and local inflammation triggered to clear 
debris

[32]

Traumatic spinal injury Contusions and bruising due to fracture or 
dislocation leading to paralysis, or degrees of 
dysfunction below level of injury

Injury triggers inflammation that may contribute to 
secondary tissue damage

[33]

Neuroinfections
Virus Clinical characteristics Neuroimmune involvement Ref
HIV dementia Cognitive changes HIV-infected monocytes and T cells produce 

chemokines and cytokines
[34]

Arbovirus Depends on infection Virus infects neurones, local immune response, 
microglia and macrophages present viral 
antigens to T cells. Antibodies may control 
spread

[35,36]

TBE, e.g. Zika Depends on infection, e.g. Zika virus: microceph-
aly, GBS and CNS disorders

Role of myeloid cells in facilitating viral spread and 
pathology

[37]

Rabies Encephalitis Immune responses crucial to clear neurotrophic 
virus

[38]

HSV Fever can induce anti-NMDAR encephalitis Innate and adaptive immune responses control 
infection. Virus evades CD8+ T cells. TLR-3 
polymorphisms associated with susceptibility

[39]

EBV Febrile illness, meningeal signs, epileptic insults, 
depression polyradiculomyelitis, cognitive 
disorders, encephalitis

EBV-related lymphomas in CNS. Increased 
mononuclear leucocytes. Evidence that EBV 
infection is linked to MS and CFS

[40,41]

SSPE Fatal complication of measles infection. Latency 
period of 4–10 years leading to coma

Immaturity of immune response leads to 
widespread infection

[42]

CFS  =  chronic fatigue syndrome; HSV  =  herpes simplex virus; NMDAR  =  N-methyl-D-aspartate receptor; PSS  =  primary Sjögren’s syndrome; 
SSPE  =  subacute sclerosing panencephalitis; TBE  =  tick-borne encephalitis virus; AChR  =  acetylcholine receptor; AD  =  Alzheimer’s disease; 
ADEM = acute demyelinating encephalomyelitis virus; ALS = amyotrophic lateral sclerosis; CNS = central nervous system; CSF = cerebrospinal fluid; 
EBV = Epstein–Barr virus; GBS = Guillain–Barré syndrome; HD = Huntington’s disease; MS = multiple sclerosis; MG = myasthenia gravis; SLE =  
systemic lupus erythematosus; TLR = Toll-like receptor.

Table 1.  (Continued)
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Table 2. Nobel prizes relevant to the field of neuroimmunology

Year Recipient Topic Influence on neuroimmunology field

1901 Emile A. Behring Serum therapy Opened a new road in medical science 
for treating diseases

1906 Camillo Golgi and Santiago Ramón y 
Cajal

Structure of the nervous system Impregnation method allowed 
microscopy of neuroglia

1908 Ilya I. Metchnikoff and Paul Ehrlich Recognition of work on immunity. 
Metchnikoff discovered types and 
functions of phagocytes. Ehrlich 
identified types of blood leucocytes

Formulating the concept of antibody: 
antigens complexes

Antibodies are the foundation for 
immunohistochemistry and for some 
therapies

1919 Jules Bordet Discoveries relating to immunity Interaction of antibodies and comple-
ment. Of diagnostic importance and 
understanding mechanisms of cell 
death

1927 Julius Wager-Jauregg Therapeutic value of malaria 
inoculation in the treatment of 
dementia paralytica

The link between infection, inflamma-
tion and neurological diseases

1945 Alexander Fleming, Ernst B. Chain and 
Howard W. Florey

Discovery of penicillin and treatment 
for various infectious diseases

Key approach to managing bacterial 
infections including central nervous 
system (CNS) diseases, e.g. brain 
abscesses

1951 Max Theiler Yellow fever and how to combat it Controlling arboviruses using live 
attenuated viruses. Paved the way for 
controlling neurotrophic viruses

1953 Watson and Crick Structure of DNA Understanding genetic disorders and 
potential of gene therapy

1954 John F. Enders, Thomas H. Weller and 
Frederick C. Robbins

Ability of poliomyelitis viruses to grow 
in cultures of various types of tissue

In-vitro  testing of vaccines, neutralizing 
antibodies, typing infectious agents 
and cytopathic effects

1960 Frank Macfarlane Burnet and Peter B. 
Medawar

Acquired immunological tolerance Self/non-self-discrimination led to 
approaches to induce tolerance to 
self-antigens in neuroinflammatory 
diseases

1972 Gerald M. Edelman and Rodney R. Porter Discoveries concerning the chemical 
structure of antibodies

Role of antibodies in disease, use in 
technologies, e.g. vaccine develop-
ment, enzyme-linked immunosorbent 
assay

1976 Baruch S. Blumberg and D. Carleton 
Gajdusek

New mechanisms for the origin and 
dissemination of infectious diseases

Idea of persistent infections and slow 
viruses (spongiform 
encephalopathies)

1980 Baruj Benacerraf, Jean Dausset and 
George D. Snell

Genetically determined structures on 
the cell surface regulating 
immunological reactions

Relevance of major histocompatibility 
complex (MHC) to developing 
neuroinflammatory disorders, e.g. 
DR2 in multiple sclerosis

1984 Niels K. Jerne, Georges J.F. Köhler and 
César Milstein

Specificity in development and control 
of the immune system. Principle for 
production of monoclonal 
antibodies

Development of monoclonal antibody 
(mAb) for therapies in neuroinflam-
matory diseases. mAb for character-
izing immune molecules and role in 
diseases using immunohistochemistry

1987 Susumu Tonegawa Genetic principle for generation of 
antibody diversity

Autoantibodies to peripheral nervous 
system (PNS) and CNS surface 
proteins, e.g. ion channels, receptors, 
myelin, axons

(Continues)
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(PNS) was aided by the use of chemicals to enhance the 
microscopic visibility of nerve cells [50,51], approaches for 
which Camillo Golgi and Santiago Ramon y Cajal received 
the Nobel Prize for Medicine in 1906 (Table 2). It was also 
with these new staining techniques that Alois Alzheimer iden-
tified the pathology underlying dementia that later became 
known as Alzheimer’s disease (AD) (1906) [52], and allowed 
Dawson to perform detailed microscopic examinations of MS 
(1916) [53] showing inflammation around blood vessels in 
CNS lesions.

Purkinje is credited for the first descriptions of neu-
rones in 1837 [54], and only later did Golgi describe 
glial cells (1871), although Virchow had introduced the 
name ‘neuroglia’ and created the concept that nerve 
cells are held together by ‘glia’ (meaning glue) in 1856 
[55]. Alongside the descriptions of neurological disease, 
various aspects of immunology were also investigated 
(Fig. 2). Metchnikoff revealed the rudimentary immune 
cells in freshwater starfish (1880) [56], and used the 
term ‘phagocytosis’, which became the basis of his 
research for which he was awarded the Nobel Prize in 
1908 with Paul Ehrlich for discovery of blood leucocytes 
(Table 2). Later, Rio-Hortega showed that cells in the 
brain (microglia) were able to phagocytose (1919) [57]. 
In the same year, Jules Bordet was awarded the Nobel 

Prize for identifying factors (antibodies) in blood arising 
after vaccination [58], although it was not until 70 years 
ago that B cells were found to be important producers 
of antibodies in 1948 [59].

Immunology at the time was focused on the vaccine 
development for infectious diseases after the published work 
on the first vaccine for smallpox by British physician Edward 
Jenner in 1796 [60]. More relevant for the neuroimmuno-
logical field was the discovery of the vaccine for the neu-
rotrophic rabies virus by Louis Pasteur (1885) [61] and the 
vaccine for polio by Jonas Edward Salk (1953) [62]. 
Importantly, Pasteur used dried virus-infected rabbit spinal 
cord for immunization which occasionally induced a post-
vaccine encephalomyelitis in humans. That the disease did 
not reflect rabies indicated that brain components in the 
vaccine were antigenic. In the 1940s adjuvants were devel-
oped to potentiate vaccines, and several vaccines as well as 
infections have been linked to neuroinflammatory diseases 
such as, for example, e.g. MS and acute disseminated encepha-
lomyelitis (ADEM) (Table 1). The serendipitous finding of 
post-rabies vaccination encephalitis was later exploited for 
immunization strategies to deliberately induce experimental 
autoimmune diseases (Fig. 2). Of relevance to the immune 
privilege nature of the CNS, in 1890 Gilman Thomson showed 
that brain cells can be transplanted without being rejected, 

Year Recipient Topic Influence on neuroimmunology field

1996 Peter C. Doherty and Rolf M. Zinkernagel specificity of the cell mediated 
immune defence

MHC class I and II restricted immune 
response applicable to infections and 
autoimmunity

1997 Stanley B. Prusiner Prions: a new biological principle of 
infection

Modes of action may be applicable to 
neurodegenerative diseases

2002 Sydney Brenner, H. Robert Horvitz and 
John E. Sulston

Genetic regulation of organ 
development and programmed cell 
death

Cell death mechanism key to regulating 
neuronal development, neurodegen-
eration and control of immune 
responses

2003 Paul C. Lauterbur and Sir Peter Mansfield Magnetic resonance imaging Imaging neuroinflammatory diseases 
and response to therapy

2006 Andrew Z. Fire and Craig C. Mello RNA interference: gene silencing by 
double-stranded RNA

Therapeutic approaches targeting 
aberrant gene associated with 
neurological disorders

2007 Mario R. Capecchi, Martin J. Evans and 
Oliver Smithies

Principles for introducing gene 
modifications in mice using 
embryonic stem cells

The approach allows the study specific 
gene function and to create animal 
models for, e.g. neuroinflammatory 
diseases

2011 Bruce A. Beutler, Jules A. Hoffmann and 
Ralph M. Steinman

Discoveries concerning activation of 
innate immunity (B.A.B., J.A.H.). 
Role of dendritic cells in adaptive 
immunity (R.M.S.)

How innate and adaptive immune 
responses are activated are key to 
understanding and manipulation of 
immune responses to control diseases

2012 John B. Gurdon and Shinya Yamanaka Mature cells can be reprogrammed to 
become pluripotent

Stem cells will facilitate regeneration 
within the nervous system to replace 
damaged cells and tissues

Table 2.  (Continued)
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many years before Sir Frank Macfarlane Burnet and Peter 
B. Medawar’s seminal studies, for which they received the 
Nobel prize in 1960 (Table 2).

1960–1980

Further to the identification and description of diseases, 
this era prompted the development of precise criteria 
for diagnosis of neuroinflammatory diseases, as well as 

examining the pathological mechanisms underlying dis-
ease and testing therapeutic approaches (Fig. 3). 
Technically, the development of computed tomography 
scans, positron emission spectroscopy (PET) and mag-
netic resonance imaging (MRI) allowed the first images 
of living brain, revolutionizing the diagnosis of neuro-
inflammatory diseases and allowing non-invasive moni-
toring of disease progression as well as response to 
therapy.

Fig. 2. Neuroimmunology timeline 1672–1959 clinical studies = blue box; research = pink box. AD = Alzheimer’s disease; ALS = amyotrophic lateral 
sclerosis; BBB = blood–brain barrier; CNS = central nervous system; CSF = cerebrospinal fluid; EAE = experimental autoimmune encephalomyelitis; 
EAN = experimental autoimmune neuritis; HLA = human leucocyte antigen; MS = multiple sclerosis.
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Fig. 3. Neuroimmunology timeline 1960–1999 clinical studies = blue box; research = pink box. Aβ = A beta; AChR = acetyl choline receptor; 
ACTH = adrenocorticotrophic hormone; AD = Alzheimer’s disease; BBB =  blood–brain barrier; CNS = central nervous system; EAE = experimental 
autoimmune encephalomyelitis, EAN = experimental autoimmune neuritis; FDA = US Food and Drug Administration; GBS = Guillain–Barré 
syndrome; GFP = green fluorescent protein; HLA = human leucocyte antigen; HSC = haematopoietic stem cells; IFN = interferon; MG = myasthenia 
gravis; MHC = major histocompatibility antigen; MOG = myelin associated glycoprotein; MS = multiple sclerosis; MSC = mesenchymal stem cells; 
NSC = neuronal stem cells; TCR = T cell receptor.
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There was a surge in discoveries related to antibodies 
after the antibody structure was discovered (1959) [63]. 
In this era associations were made linking antibodies to 
diseases such as MG and other neuroinflammatory diseases 
[64]. For some diseases the target of the antibodies were 
identified [65], and the impact of pathogenic antibodies 
shown in vitro  [66]. A key development in the immunol-
ogy field was the generation of monoclonal antibodies 
(mAb) [67]. Not only were mAb key to the development 
of assays such as enzyme-linked immunosorbent assay 
and other techniques key to linking immune cells to 
neurological diseases [68], this advancement also allowed 
development of specific therapeutic approaches in which 
mAb were designed to block or deplete specific cells of 
the immune system.

The involvement of immune responses in neurological 
diseases prompted new approaches to treat disease and 
development of animal models of human diseases. While 
adjuvants developed in the 1940s were essential for induc-
ing clinical disease in the case of experimental autoim-
mune encephalitis (EAE) [69] and experimental 
autoimmune neuritis (EAN), injection of antibodies to 
acetylcholine receptor (AchR) and from patients with 
myasthenia gravis (MG) induced experimental disease in 
rabbits. The therapy used for antibody-mediated diseases 
included plasma exchange [70], while broad immunosup-
pressive approaches, e.g. adrenocorticotrophic hormone, 
were implemented for MS [Food and Drug Administration 
(FDA)-approved in 1978].

Study of the immune system differentiated between 
cellular and humoral immunity and recognized T and B 
cell interactions, as well as the discovery of the first inter-
leukins. Key to further developments in immune-mediated 
diseases was Zinkernagel and Doherty’s finding (1974) 
that elimination of virus-infected cells killer T cells required 
not only to recognize the virus but also the major his-
tocompatibility complex (MHC) molecule of the host [71]. 
Around this time the realization grew that cells later 
named as dendritic cells, due to their morphology, were 
intricately linked with adaptive immune responses, a notion 
that would later earn Steinman the Nobel Prize [72]. 
Studies in this era supporting Cajal’s idea, that glia assist 
neurones, were aided by the development of the electron 
microscope and electrophysiological studies, although how 
this impacted on neuroinflammatory disease was as yet 
unknown.

1981–2000

This era saw major steps in putting neuroimmunology 
on the map as a new field with the launch of the Journal 
of Neuroimmunology  by Cedric Raine and colleagues 
(1981), the first PubMed term of neuroimmunology (1981), 
the initiation of Neuroimmunology Congresses in Stresa, 

Italy (1982), the foundation of the ISNI (1987) and the 
launch of the Journal of Clinical and Experimental 
Neuroimmunology  in 1988.

If the previous era was dedicated to the role of anti-
bodies in disease for which Tonegawa received the Nobel 
Prize in 1987 (Table 2) [73], this era was that of T cells 
in neuroimmunology and the recognition of the importance 
of innate immunity (Fig. 3). Following Doherty and 
Zinkernagel’s discovery in 1974, for which they were 
awarded the Nobel Prize in 1996, major steps were made 
in identifying the T cell receptor (1983–1987) [74,75] (Table 
2), classification of T cells (1986) [76], the role of MHC 
peptide complex in triggering T cell responses (1991) [77] 
and how T cells are regulated (1995) [78] or modified 
using altered peptide ligands (1998) [79]. Models also made 
use of the emerging field of transgenic mice designed to 
express human proteins such as human leucocyte antigens 
(HLA), T cells expressing specific T cell receptors (TCRs), 
markers such as green fluorescent protein (GFP) to allow 
tracking of cells or generated to lack specific molecules 
(knock-out or deficient mice). Many of the studies exam-
ining the pathogenic role of T cells focused on the EAE 
model of MS (1981–1984) [80–82] although inflammation 
was also reported in depression (1983) [83] and neuro-
degenerative diseases, e.g. AD, which up to that point 
had been widely assumed to be due to neuronal degen-
eration. While many studies focused on immune-mediated 
damage, studies also revealed the importance of the immune 
response in shaping neuronal development. For example, 
while microglia were reported to be crucial for synaptic 
pruning, new studies from the Shatz laboratory revealed 
that neuronal expression of MHC class I was key to long-
term structural and synaptic modifications [84].

The focus on pathogenic T cells in EAE models of MS 
increased and experiments using antibodies to block TCRs 
were performed [85,86]. Further studies highlighted the 
importance of other myelin antigens as targets for the demy-
elinating response and induction of chronic relapsing clinical 
disease to model the disease course in MS more clearly [87].

Although T cells were at the forefront of many studies, 
therapeutic approaches targeting pathogenic antibodies such 
as trials using intravenous immunoglobulin (IVIg) in GBS, 
or use of therapeutic mAB to block adhesion molecules 
on immune cells, revealed the importance of cell traffick-
ing across the BBB [88]. Although such approaches were 
effective in animal models, blocking immune cell entry in 
the CNS in humans had serious side effects. Other strate-
gies focused on repairing damage in the nervous systems 
were examined. These strategies included transplanting 
oligodendrocyte progenitor cells for remyelination [89] and 
stem cells that, although originally designed to replace 
damaged cells, they were later recognized to be neuro-
protective via the release of growth factors and immune 
modulatory molecules (i.e. therapeutic plasticity) [90].
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This era saw the emergence of the human immunode-
ficiency virus (HIV), the isolation of HTLV-1-like retrovirus 
from tropical spastic paraparesis cases, the link between 
Campylobacter jejuni  infection and GBS and the Nobel 
Prize to Prusiner for his studies on prions as new infec-
tious particles promoting neurological disease (Table 2). 
These findings clearly highlighted the role of infectious 
agents in triggering neuroinflammatory disorders, although 
it was unclear how the different infections triggered disease. 
One innovative concept at the time was proposed by 
Janeway (1989) [91], suggesting that microbes act via recep-
tors on innate immune cells. Only later was this concept 
validated by the discovery of Toll-like receptors (TLR) 
and other innate receptors, as well as dendritic cells (Nobel 
Prize: Beutler, Hoffman, Steinman 2011). Further revela-
tions were made in 1994, when Matzinger proposed the 
‘danger model’ (1994) to include the concept that changes 
in the host’s tissues due to ‘dangerous’ situations, i.e. trauma 
or disease, could also activate innate immunity [92].

Another technological leap during this era was the use 
of genetic engineering that enabled the generation of mice 
expressing antigen-specific TCR, such as against the myelin 
basic protein, and humanized mice expressing certain 
HLA haplotypes in an attempt to understand how human 
genes contributed to neuroinflammmatory diseases.

2001–2018

Accumulating evidence during the last two decades shows 
that immune senescence is associated with late-onset neu-
rodegenerative diseases such as AD, PD, spinal cerebellar 
ataxia, ALS and Huntington’s disease, thus broadening 
the range of diseases falling within the neuroimmunology 
field (Table 1). Further evidence that the immune response 
is also key to neuronal development was highlighted by 
the finding that the complement component C1q is 
expressed by synapses of postnatal but not adult neurones 
[93] (Fig. 4). Studies in this era have also expanded ideas 
of how microbes, such as the newly emerging Zika virus, 
the re-emergence of Ebola and the gut microbiome, influ-
ence susceptibility to neuroinflammatory disease. In line 
with this, clinical trials have highlighted the need to 
develop more specific approaches in neuroimmune diseases 
other than broad immunosuppression or blocking cells 
from entering into the CNS, in order to avoid the emer-
gence of opportunistic infections. Thus, specific approaches 
such as cell depletion therapies (e.g. of B cells in MS), 
tolerance-inducing strategies and the use of stem cells 
have been a major focus in MS, while gene therapy 
approaches have been initiated in an attempt to correct 
genetic mutations in ALS [94] (Fig. 4).

Probing neuroinflammatory diseases has been aided 
with improved higher-resolution MRI, single photon emis-
sion computed tomography and PET ligands [95,96], and 

optical coherence tomography to visualize the progression 
of disease in patients and for some modes the contribu-
tion of inflammation. Similarly, in-vivo  optical imaging, 
for example of GFP-labelled T cells, glia or transplanted 
human induced pluripotent stem cells (iPSC), in experi-
mental models has greatly influenced our knowledge of 
the cross-talk between the immune and nervous systems 
[97].

Although mainly limited to in-vitro  and animal stud-
ies, genetic modification has proved to be an indispen-
sable tool to study gene function in normal development 
and disease and has yielded several Nobel Prizes in 
this area (2006, Fire and Mello; 2007, Capecchi, Evans, 
Smithies). Breakthroughs in this era include the genera-
tion of human iPSCs for which Gurdon and Yamanaka 
received the Nobel Prize in 2012; gene-targeting 
approaches and genome-editing tools, the most effective 
for interrogation of neuroimmune disease being the 
CRISPR/Cas9 system (derived from clustered regularly 
interspaced short palindromic repeats) originating from 
early discoveries in bacteria [98]. While yet to prove 
applicable to human disorders, such gene editing has 
allowed genetic manipulation of iPSC from humans, 
ALS models and elimination of viral infections by tar-
geting viral genomes.

Future perspectives

While current therapies aim to modulate neuroinflam-
mation arising during the disease, future approaches should 
aim at disease prevention. For some diseases, the aetio-
logical agents are known, and thus vaccination strategies 
are key for disease prevention. In other cases, the specific 
genes or environmental agents triggering disease require 
clarification. Prophylactic approaches for genetic disorders 
could exploit genetic modification during development, 
while cell therapy strategies may aid regeneration of the 
damaged nervous system. Exploitation of infections agents 
may also be beneficial, as demonstrated by the recent 
clinical trial using a non-pathogenic poliovirus for treating 
glioblastomas [99].

For disease prevention, rapid and specific diagnosis 
as well as adequate ways to monitor the disease course 
and response to therapy are crucial. Thus, advancements 
in biomarker research will be key to faster diagnosis 
and more efficient monitoring in clinical trials, speeding 
up drug development and reducing costs. Biomarkers 
of neuroimmunological diseases may include markers 
of BBB disruption, demyelination, oxidative stress and 
excitotoxicity, axonal/neuronal damage, gliosis, remy-
elination and repair, but should also focus on markers 
of altered immune function such as cytokines, 
chemokines, antibodies, adhesion molecules, antigen 
presentation and changes in cellular subpopulations 
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[100]. Ideally, detection and collection of new biomark-
ers will be minimally invasive, specific for the disease 
and reflect response to therapy Additionally, well-char-
acterized tissue biobanks will be crucial to these advance-
ments in biomarkers.

Another important aspect of future neuroimmunology 
research and developments will be in disease modelling. 
The highly effective CRISPR/cas9 system will allow preci-
sion engineering of the genome, and has the potential 
to speed up the generation of transgenic animal models, 

generating single-gene mutations in adult animals. Model 
systems making use of iPSCs from patients will also allow 
better translation of fundamental research data to the 
clinic. Further advances in CRISPR/cas9 or similar systems 
to increase transgene efficiency or to regulate gene expres-
sion using inducible expression systems will allow genes 
to be regulated once gene editing is completed. Such 
approaches will herald better treatments in the form of 
personalized medicine, gene editing (taking into account 
the ethical issues) and improved clinical trial design.

Fig. 4. Neuroimmunology timeline 2001–2018. Clinical studies = blue box; research = pink box. ACTH = adrenocorticotrophic hormone; 
ALS = amyotrophic lateral sclerosis; AQP4 = aquaporin 4; CNS = central nervous system; EAE = experimental autoimmune encephalomyelitis; 
EAN = experimental autoimmune neuritis; EMA = European medical agency; FDA = US Food and Drug Administration; GWAS = genomewide 
association study; IFN = interferon; IMSGC = International Multiple Sclerosis Genetics Consortium (IMSGC); MHC = major histocompatibility 
antigen; MG = myasthenia gravis; MS = multiple sclerosis; MSC = mesenchymal stem cells; NMO = neuromyelitis optica; NSC ; neuronal stem cells; 
PML = progressive multifocal leucoencephalopathy; PPMS = primary progressive multiple sclerosis; RRMS = relapsing–remitting multiple sclerosis; 
VLA-4 = integrin α4β1 (very late antigen-4); TLR = Toll-like receptors; TNF = tumour necrosis factor.
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The increase in data generated by next-generation 
sequencing is expected to aid identification of genetic 
variants in neuroimmunological diseases. Such data are 
already contributing to designing algorithms, develop-
ment of pharmacogenomics and personalized medicine. 
These approaches will be fundamental in reducing risks 
in drug development by avoiding adverse drug reactions, 
and minimizing cost by limiting drug administration 
solely to those patients who will benefit [101]. While 
drug discovery is increasingly costly and prolonged, 
artificial intelligence (AI) may be key to reversing this 
trend. AI will use previously collected data and molecular 
dynamic predictions to reduce the number of compounds 
to be screened, repurpose compounds, predict interac-
tions between compounds and their target and refine 
clinical trial populations [102]. Advancements in targeted 
drug delivery will also reduce side-effect profiles of 
compounds and aid in those compounds that will read-
ily cross the BBB [103]. Both Big Pharma and academia 
have the potential to increase drug discovery efficiency 
by embracing AI, pharmacogenomics, personalized medi-
cine and targeted drug delivery to provide future treat-
ments of neuroimmunological diseases.

Conclusions

The field of neuroimmunology has evolved from early stud-
ies recognizing that immune responses are present in the 
CNS and PNS during disease, to sophisticated approaches 
for manipulation of the immune system. The list of neu-
roimmune diseases has expanded from the prototypical 
cases of MS, GBS and MG to incorporate diseases considered 
to be purely neurological such as AD, PD, ALS as well as 
behavioural and mood disorders. Neuroimmunology has 
evolved to encompassed less disease-orientated fields by 
addressing how the immune system impacts upon the 
developing nervous systems during pregnancy, how neural 
stem cells play an immune regulatory role, the contribution 
of immune-senescence to ageing, how microbiota influence 
the immune system, and how this impacts upon develop-
ment and susceptibility to neurological diseases.

Understanding the delicate balance between the benefi-
cial and pathological effects of the immune system with 
neuronal development and diseases has already allowed 
the development of rational approaches for treating neu-
roimmune disorders. Further advances are expected to 
address the following points.

How pathogenic (auto)antibodies arise and how they 
contribute to immune-mediated neurological 
disorders

While the source of pathogenic antibodies in paraneo-
plastic neurological syndrome (PNS) are well described, 
a significant number of neurological diseases in which 

pathogenic antibodies directed to neuronal structures are 
not related to cancer. Uncovering how these antibodies 
arise, how they enter the nervous systems and approaches 
to inhibit antibody formation will be key to developing 
effective therapeutic approaches.

The role of memory B cells in autoimmune diseases

For several autoimmune disorders, e.g. MS, rheumatoid 
arthritis and Graves’ disease, among others, an association 
has been made between Epstein–Barr virus (EBV) and 
development of disease. The recent awareness that effec-
tive therapies target memory B cells makes the hypothesis 
that EBV triggers autoreactive B cells and/or antibodies 
is very compelling. Exactly how EBV triggers autoimmune 
neurological diseases will be an important step in under-
standing neuroimmunological diseases such as MS.

Inflammaging and neurological diseases

The term ‘inflammaging’ has been used to describe the 
chronic, low-grade inflammation associated with ageing. 
Senescence in the immune and nervous systems covers a 
multitude of factors, including lowered response to vac-
cination, decline in effective autophagy and increased 
susceptibility to cancer and autoimmune diseases. Why 
such changes occur will be aided by studying healthy aged 
cohorts of different backgrounds and races and highlight 
how environmental factors such as diet, gut microbiota 
or genes and lifestyle contribute to the immune imbalance 
associated with ‘inflammaging’. A key question will thus 
be: ‘Can we manipulate the immune response to combat 
the effects of ageing?’.

Neuroimmunology of pregnancy and development

Maternal stress or infections during pregnancy have been 
linked to impaired cognitive development and psychiatric 
disorders in the offspring. The recent emergence of Zika 
virus has underscored not only how the brain may be 
shaped by infections during development, but that such 
infections may predispose to autoimmune diseases later 
in life. A future challenge will thus be to understand 
how maternal immune factors, including immune cells 
and cytokines, influence brain development in utero  and 
modulate the beneficial factors to enhance brain develop-
ment to prevent and limit the detrimental effects of the 
immune system that may contribute to behavioural and 
mood disorders.

Human stem cell technology and personalized 
medicine

The advances in reprogramming somatic cells into iPSCs 
has allowed the culture of patient-specific stem cells, e.g. 
neuronal stem cells (NSC), to study the disease specific 
pathways. This technology will allow the development of 
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human in-vitro  models to study disease and patient-specific 
pathways. More importantly, these models should also 
allow approaches to modulate disease-specific factors aiding 
personalized medicine. For some neuroimmunological dis-
eases the use of NSC has already proved effective in 
experimental settings to not only repair the nervous system 
but examine an unexpected trait by which NSC modulate 
immune responses. While in its infancy, gene-editing 
approaches are expected to develop to the point that genetic 
neurological diseases may be treatable and modulate the 
immune and nervous systems to combat neuroimmuno-
logical disease, and in the meantime allow standardization 
of iPSC cells.
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